Structural Failures

- Structural failures can be attributed to different causes:
 - Human errors
 - Extreme events
 - Accidents
 - Deterioration
 - Poor workmanship

- ...

often occurring in combination

- Human error is a key factor in many structural failures
- Structures seldom experience their full design load, thus possible failure can remain 'hidden' for years
- To ensure structural safety we need to account for all possible causes of failure

Structural Failures: Causes

Inadequate appreciation of loads or response	43%
Inadequate execution of procedures	13%
Random variation in loading, structure, material, workmanship etc.	10%
Contravention of requirements in contract documents or instructions	9%
Unforeseeable abuse, misuse, sabotage etc	7%
Mistakes in drawings or calculations	7%
Others	11%

Structural Failures: Causes

Ignorance, Carelessness and Negligence	37%
Insufficient Knowledge	27%
Underestimating Influences	14%
Forgetfulness, Errors and Mistakes	10%
Unjustifiably trusting others	6%
Objectively unknown influences	6%

Schneider, 1997

Structural Failures: Causes

- From a survey of construction failures (about 800) by Matousek and Schneider
 - 25% of cases
 - 10% of amount of damage
 - 15% of casualties
 are attributed to consciously accepted risks (CAR)
- The rest (the majority!) attributed to human error
 - Unknown/ignored hazard
 - Unsuitable materials/ construction methods
 - Wrongly applied materials/methods
- Structural reliability deals with CAR's and helps us address the question 'in designing a structure, how safe is safe enough?'

Structural Failures: Comparisons

Activity	Hours of Exposure per Annum	Death rate (per 106 persons per hour of exposure)	Approximate prob. of death per person (x10-6/year)
Alpine climbing	50	30-40	1500-2000
Car travel	300	0.7	200
Construction	2200	0.07-0.2	150-440
Air travel	20	1.2	24
Home accidents	6000	0.004	24
Structural failure	6000	0.00002	0.1

Melchers, 1986

Structural failure is associated with extremely low probability: how can we quantify the effect of safety measures on this probability?

Risk in Structural Engineering

- Exposure
- Vulnerability / Damage
- Failure
- Consequences

Consequence of failure
$$Risk = P(H_i)P(D_j \middle| H_i)P(S_k \middle| D_j \cap H_i)C_k$$
 Probability of failure, p_f

Risk = Frequency x Consequences

Nature of Risk

- Voluntary
 - Sports activities
 - Travel by car?

 $p_f = 1:1000 \ per \ annum \ ?$

- Involuntary
 - Living in seismic area
 - Crossing a bridge

 $p_f = 1:10000000 \text{ per annum } ?$

- Engineering risk is often involuntary
- ALARP principle
- Acceptable vs.
 Tolerable levels
- Low probability, large consequence events

Consequences of failure

The consequences of failure vary significantly from structure to structure, and may depend on:

- Nature of the hazards
- Structural type/form
- Use/occupancy
- Location
- Time of day

Classification of consequences

	Direct Consequences	Indirect Consequences
Human	Injuries Fatalities	Injuries Fatalities Psychological Damage
Economic	Replacement/repair of structure Replacement/repair of contents	Replacement/repair of structure Replacement/repair of contents Loss of functionality Clean up costs Rescue costs Effect on share prices/market value Investigation/compensation Loss of reputation
Environmental	CO ₂ Emissions Energy use Toxic releases Environmental Studies/Repair	CO ₂ Emissions Energy use Toxic releases Environmental Studies/Repair

Failure consequences in the Eurocodes

- EN1991-1-7 classifies buildings according to their consequences of failure to determine how design situations should be dealt with
 - CC1: Low consequence for loss of human life, and economic, social or environmental consequences are small or negligible
 - CC2: **Medium** consequence for loss of human life, economic, social or environmental consequences are **considerable**
 - CC3: **High** consequence for loss of human life, *or* economic, social or environmental consequences are **very high**

Reliability Management in Eurocodes

Table B1 - Definition of consequences classes

Consequences Class	Description	Examples of buildings and civil engineering works
CC3	High consequence for loss of human life, or economic, social or environmental consequences very great	Grandstands, public buildings where consequences of failure are high (e.g. a concert hall)
CC2	Medium consequence for loss of human life, economic, social or environmental consequences considerable	Residential and office buildings, public buildings where consequences of failure are medium (e.g. an office building)
CC1	Low consequence for loss of human life, and economic, social or environmental consequences small or negligible	Agricultural buildings where people do not normally enter (e.g. storage buildings), greenhouses

Three reliability classes are associated with the above consequence classes