• Under constant amplitude loading, the rate of crack growth can be estimated as:

$$\frac{da}{dN} = C(\Delta K)^m \qquad (Paris-Erdogan \ law) \qquad \Delta K = \Delta \sigma \cdot Y \cdot \sqrt{\pi a}$$

- Its position depends on
 - i) stress ratio $R (= \sigma_{min} / \sigma_{max})$
 - ii) environment
- Below the threshold value ΔK_{thr} cracks will not propagate
- As fracture is approached, fatigue crack growth accelerates

Crack growth rate da/dN m/cycle

Dependence of crack growth on stress ratio $R = \sigma_{min} / \sigma_{max}$

Dependence of crack growth on environment

Typical values for Fracture Mechanics parameters

• For welded details, the following values may be used

Material	m	C	ΔK_{th}
Steel	3.0	$5.21 \cdot 10^{-13}$	63
Aluminum	3.0	$1.41\cdot 10^{-11}$	21

Units: $K : [MPa \cdot \sqrt{mm}]$ and da/dN : [mm/cycle]. Threshold value for high residual stresses: R = 0.5.

• For fracture mechanics analysis of riveted details, a similar (conservative) value of ΔK_{th} can be used

$$\Delta K_{th} = 63N / mm^{3/2} \approx 2MPa\sqrt{m}$$
 (constantly for all R-ratios)

• The material constants C and m for old steel, if not determined in crack propagation tests, can be taken as

$$C = 4 \cdot 10^{-13}$$
 and $m = 3$ (units in N(mm)^{-3/2} and mm) or $C = 1.3 \cdot 10^{-11}$ and $m = 3$ (units in MPa(m)^{1/2} and m)

• Wrought iron has higher ΔK_{th} values but the da/dN ratio is also higher in comparison to mild steel.

$$\frac{da}{dN} = C(\Delta K)^{m}$$

$$\Delta K = \Delta \sigma \cdot Y \cdot \sqrt{\pi a}$$
(Paris-Erdogan law)

Solution of the Paris-Erdogan law for constant amplitude loading yields:

$$N_f = \int_{a_i}^{a_f} \frac{da}{C(\Delta K)^m} = \int_{a_i}^{a_f} \frac{da}{C(\Delta \sigma \cdot Y(a) \cdot \sqrt{\pi a})^m} = \int_{a_i}^{a_f} \frac{1}{C(\Delta \sigma \cdot Y \cdot \sqrt{\pi})^m} \frac{da}{a^{m/2}}$$

Since C, $\Delta \sigma$ and m are all constant and if Y is assumed constant between a_i and a_f , the only variable is a, and integration is straightforward, giving the closed-form solution:

$$N_f = \frac{a_f^{1-m/2} - a_i^{1-m/2}}{C(\Delta \sigma \cdot Y \cdot \sqrt{\pi})^m (1 - m/2)}$$

In case Y cannot be assumed as constant and varies significantly between a_i and a_f , numerical integration becomes necessary to solve the Paris-Erdogan law!

$$N_f = \frac{a_f^{1-m/2} - a_i^{1-m/2}}{C(\Delta \sigma \cdot Y \cdot \sqrt{\pi})^m (1 - m/2)} \qquad a_f = a_c = \frac{1}{\pi} \left(\frac{K_c}{Y \sigma_{\text{max}}}\right)^2$$

 N_f depends on: i) magnitude of the applied stress range ($\Delta \sigma$)

- ii) initial crack size (a_i)
- iii) final (critical) crack size (a_f)
- iv) Y (compare Y for centre-cracked and edge specimens!)

Note that in general:

$$N_f = \frac{C}{\Lambda \sigma^m}$$
 (S-N curve) or $\log(N_f) = \log(C) - m \cdot \log(\Delta \sigma)$

- Several approaches exist for selecting an appropriate value for the initial crack size, a_i :
 - selecting a value based on actual measurements on the structure in question or on a similar structural detail
 - selecting a value based on what is known to be the "minimum detectable crack size" for the method of NDT being employed
 - selecting a value which has been "calibrated" by back-calculation of the fatigue lives of test specimens similar to the details under evaluation
- Several approaches exist for selecting the final or critical crack size a_c or a_f :
 - it can be taken as being equal to the thickness of the cracked element, or some percentage of this thickness.
 - it can be limited by appropriate brittle fracture criteria and calculated from by using the fracture toughness of the material, as shown previously
 - it can be obtained by considering yield criteria using Failure Assessment-Diagrams (FAD)

Effect of a ion crack growth

Effect of critical crack size on N_F

Typical example

An illustrative and simple calculation can be made using the solution of the Paris-Erdogan Law. Consider a small crack in a large structure, which can imply that $Y \approx 1$.

Illustrative crack growth life predictions for a carbon steel.

<i>a</i> ₀ (mm)	a_f (mm)	crack growth life	ratio	
5	50	382	1	
5	100	419	1.1	
1	50	3781	10	

Fracture Mechanics triangle

$$K = \sigma Y \sqrt{\pi a} \qquad \Delta K = \Delta \sigma \cdot Y \cdot \sqrt{\pi a}$$