Contraction (constriction) scour

Factors that can cause contraction scour are:

- natural stream constrictions
- long highway approaches to the bridge over the floodplain
- natural berms along the banks due to sediment deposits
- debris
- vegetative growth in the channel or floodplain
- ice formations or jams

Local scour (at piers)

Local scour (at abutments)

Narrow abutments

Local scour

- Factors which affect the magnitude of local scour depth at piers and abutments are:
 - velocity of the approach flow
 - depth of flow
 - width of the pier
 - discharge intercepted by the abutment and returned to the main channel at the abutment
 - length of the pier
 - size and gradation of bed material
 - angle of attack of the approach flow to a pier or abutment
 - shape of a pier or abutment
 - bed configuration
 - Ice formation or jams and debris.

Total bridge scour

Total scour = Natural scour + Contraction scour + Local scour

Types of scour

Types of scour

- Two conditions for contraction and local scour:
 - Clear-water scour: no movement of the river bed material
 - Live-bed scour: transport of bed material from upstream; of cyclic nature
- Typical clear-water scour situations include:
 - coarse-bed material rivers
 - flat gradient rivers during low flow
 - local deposits of larger bed materials
 - armored river beds
 - vegetated channels
- Critical velocity equations are used to determine the velocity that distinguishes between clear-water and live-bed scour.

Debris Accumulation

Debris Accumulation

- Debris against bridges can significantly affect hydraulics, scour and risk of failure.
- Debris can be classed as large woody debris, small vegetation or urban debris.
- Floating debris vs non-floating debris.
- Debris accumulation reduces the flow area and increases flow velocity in the vicinity of a structure.
- Can increase contraction scour or cause erosion of the riverbed and banks.
- Increased effective width of the pier, increased flow velocities resulting from the constriction can also increase local scour.
- Changes in flow patterns arising from debris can change the angle of attack at piers and abutments.
- Debris can also lead to increased drag and hydrodynamic forces and impact forces resulting from debris colliding with the piers and/or deck
- Debris accumulation can result in scour depth increase of up to 50%!!

Debris Accumulation

- The debris load depends on:
 - the length of contributing channel upstream of the structure
 - catchment topography
 - geology
 - potential for soil erosion
 - land use adjacent to the channel
- Risk of debris accumulation can be explained through:
 - the debris load (source)
 - mobilisation and transportation (pathway)
 - interaction with the structure (receptor)
- Certain bridge features are more likely to accumulate debris such as:
 - pile groups or closely spaced piers
 - exposed pile footings
 - open truss superstructures

Factors influencing scour

	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	GENERAL SCOUP			neff (b)			
			Fac	ctors i	nfluencing LOCA	LISE	D SCOUP		
GEOMORPHIC/HYDROLOGIC		FLOOD FLOW TRANSPORT			BED SEDIMENT		BRIDGE GEOMETRIC		
Catchment Characteristics	Precipitation	Flood frequency		median size	d ₅₀	Bridge	degree of contraction		
	Physical characteristics:	Hydrograph	flow rate	Q		σ _g	opening	superstructure submergence	
	-topography/slope		duration	T	cohesion	C	15.7	type	
	-size -shape	Flow	mean	V	vertical stratification	i	Bridge	position in main/flood channe	
			lateral distribution		areal distribution		piers	shape	Sh
	Vegetation	velocity	secondary currents		bed-rock: -erodibility			size, length, width (diameter)	<i>l</i> , b, D
	Soils:	Flow depth	main channel depth	у	-level			alignment	θ
	-type	lateral distribution					type		
	-erodibility	Sediment	sediment transport Q _s					position in main/flood channel	
River Characteristics	Valley setting	transport	rate				Bridge	shape	Sh
	Stream channel:		bed-form magnitude				abutments	size, length	L
	-width variability		form of sediment transport					alignment	θ
	-bankfull width	Debris load					Bridge location with respect to channel bend		
	-floodplain(s) extent -cross-sectional shape -channel slope						Scour protection measures	revetments, retards, s check dams, channeli bridge modifications,	sation,
	-degree of incision								
	Hydraulic controls								
	Plan form: -straight -sinuous/meandering -braided/anabranched								
	-bar development								

Channel boundaries: -bank material

-bank stability (slope)

-vegetative cover